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In the comoving frame, with the metric ( 5 )  we obtain 

ha;, = 0. (17) 

We assume further the existence of a space-like Killing vector field proportional 
to h,. Then if p, E and lhI2 are constant we can integrate equation (16) and obtain 
the barometric formula 

where 5, is the absolute value of the Killing vector at  the surface of the considered 
domain of space-time. 

We note that the magnetic field contributes to the fluid pressure twice: through the 
proper energy density &pc21h12 and through the magnetic pressure &pc21hI2. This 
conclusion is in full accordance with the fundamental concepts of relativistic 
magnetohydrodynamics. 
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Abstract. Exact expressions for the eigenvectors and eigenvalues of a Hamiltonian 
of great importance in quantum optics are derived. 

The Hamiltonian we shall consider is 

where R, = Zt=l+ui,, the uia being the Pauli spin matrices for the ith atom, and akt 
is the creation operator for the kth mode of the electromagnetic field. This Hamil- 
tonian, which describes a system of N electromagnetic modes interacting with M two 
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level atoms, is of considerable interest in quantum optics. Arecchi et af (1969) give a 
discussion of the Hamiltonian and its significance (see also Pike and Swain 1970). 
It is of interest, too, in the theory of paramagnetic ions in crystals. 

The Hamiltonian was solved exactly for the case of one atom and one mode by 
Jaynes and Cummings (1963). Tavis and Cummings (1968) obtained an exact solution 
to the multiatom, single mode Hamiltonian for the particular case of the frequency of 
the mode being equal to wo. Mallory (1969) (see also Walls and Barakat 1970) was 
able to remove the latter resttiction. Here we present an exact solution of the Hamil- 
tonian (1) without making any simplifying assumptions. 

The essential step is to notice that if we decompose the Hamiltonian as follows: 

H = C + Q  
where 

and 
Q = 2 (a,takWko +gakR+ +g*UktR-) wk0 = wk-wo (4) 

k 

then C and Q commute with each other, and consequently with H .  (Of course they 
also commute with R2 = $(R+R- + R - R + ) + R 3 2 .  Any eigenvector of H must also 
be an eigenvector of R2.) Thus if we can find simultaneous eigenvectors of C and Q 
(and R2) they will be eigenvectors of H .  Now an eigenvector of C with eigenvalue 
cw, = (%zk+mm)w0 is ln ln2 . .  . nN)lr, m )  where 

R 2 ( r , m )  = r ( r + l ) l r , m )  

R , ( r , m )  = m l r , m >  

r = $ M , $ M - l . .  . 
m = + r , r - l , . . . ,  - r .  

and 

Clearly we must have c 2 -r ,  because (Cnk+m) 2 - r .  A more general eigenstate 
is obtained by taking a linear combination of all those eigenstates belonging to the 
same value of cw,, that is, Clr, c )  = cwoIr, c )  where 

+ r  m m m 

Performing the sum over m gives 

x A ( c + r  2 C n k  > c - r , O )  (9) 

where A(c+r 2 2 nk 2 c - r ,  0 )  = 1 if c + r  2 2 n k  2 ( c - r  if c 2 r and 0 if c e r)  
and is zero otherwise. (9) is an eigenstate of C. If we can restrict the terms in the sum 
so that (9) is also an eigenstate of Q, then we have a simultaneous eigenstate of C 
and Q, which is consequently an eigenstate of H. 
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Operating with Q on (9), one obtains after some manipulation 
m m  m N  

Q I Y , C )  = 2 2 * 2 2 { A ~ ~ : ~ . . . n N ~ k w k O + g ( n i ; +  lI1l2 
n l = 0  na=O nN=O k = l  

'?Li...(nk+ l)...n~f(~ - xnk - ') +g*dn/ff(c- ' nk)  

(r.c) 
'til...(nk-1)...nN}Inln2 ' * * n N >  

x [Y,C- );nk)A(C+Y 3 c12k 2 C - Y , O )  (10) 

( 1  1) 

where f ( m )  is defined by 
f (m) = {r(r + 1 )  -m(m + l)}1'2. 

R +  Ir, m ) = f(m) Ir, m + 1 ) 

We note that 

R- Ir,m) = f ( m -  l ) J r , m -  1 ). 

In obtaining (10) we have made use of the propertiesf(r) = f( - r  - 1 )  = 0. 

q if we make the A satisfy the system of equations 
It follows from (10) that we can make (9) an eigenvector of Q belonging to the value 

(r.c) 
A ~ ~ ~ ~ . . . ( n k +  l ) . . . n ~ + g * d ~ k f ( ~  - ' nk)A?l lns . . . (nr-  l ) , , . n ~ }  = ( 1 2 )  

for all positive integer values of nl, n 2 , .  . . nN such that c + r  2 X nk > c-r, 0. If we 
specialize to one mode and put wko = 0, this expression reduces to the equation ( 2 . 8 )  
of Tavis and Cummings. 

The equations ( 1 2 )  are a set of homogeneous linear equations. The condition for 
consistent solutions leads to a polynomial equation for the eigenvalues q. For an 
allowed value of q the A can in principle be determined to within an arbitrary multi- 
plicative factor. This factor is fixed (apart from a phase factor) by the condition that 
the eigenvector be normalized. Let us denote by ( r ,  c, q )  a vector of the form (9) 
whose coefficients satisfy ( 1 2 ) .  We then have 

Qlr,c,q) = qIr,c,q) Hlr ,c ,q)  = (cwo+q)Ir,c,q). ( 1 3 )  
Thus Ir, c, q )  is an eigenvector of H having the eigenvalue (cw,+q). 

It is a formidable task to solve analytically the set of equations ( 1 2 )  in the general 
case, and numerical methods are normally required. However, solutions for small 
values of r and c can be easily obtained. For example, consider a system of two atoms 
and two modes. Let us take r = 1. If we take c = - 1, then it is easily seen that the 
only values of n, and n2 to be considered in ( 1 2 )  are nl = n2 = 0, and thus the only 
value of q allowed is q = 0. Thus the eigenstate 11, - 1 , O )  = 1O,O) l l ,  - 1 ) which 
is identical with the ground state of the unperturbed system corresponding to both 
atoms being in their ground state with no photons present. Now take c = 0. (12) 
gives us the three equations 
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which can be solved to give 

4(4 -~ ,o ) (4 -~20) -21g12(24 -~20-~~10)  = 0. (18) 
There are thus three eigenstates in this case, labelled by the three values of 4. (18) 
becomes particularly simple if we choose w1 = wo-6, w2 = wo+6. Then 

q = O  or q = + a  a = (62+4Jg12)1'2 

and from (9) and (17) the corresponding eigenstates are 

d2g* 
Il,O,O> = A,,'l*O'(0) lO,O>ll,O>+---(ll,O>l1,-1>- I O , l > l l , - l  H) ( 6 

( (  
11,0,+a) = AOJ1*O) a )  lO ,O) l l ,O)  

11,0>11,--1> 10,1>11,-1> + + d%*( a+6 a-6 

Il,O,-u) = AOJ1'O) 

The Ao,,(l*o)(q) are obtained using the normalization condition. 
If one took the case r = 1, c = 2, one would have a quintic to solve for q, giving 

five eigenvalues of H with r = 1, c = 2, and so on. The algebra increases rapidly 
in complexity as r and c increase in value. The results of a numerical study of the 
system (12) will be published at a later date. 
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